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AIIItrKt-For a linear elastic structure, the first variation of an arbitrary stress, strain and
displacement functionals corresponding to variation of shape ofexternal boundaries or interfaces
is derived by using the solutions for primary and adjoint systems. The application to optimal design
is next presented and the relevant optimality conditions are derived from general expressions. The
path-independent integrals used in fracture mechanics are rederived as a panicular case ofgeneral
expressions.

I. INTRODUCTION

The present paper constitutes the continuation ofprevious work (Part I, [I]) on variational
approach to sensitivity analysis with respect to design functions varying within a specified
domain.The first variations of any stress, strain or displacement functionals were explicitly
expressed in terms of variations of design functions. Now, a more difficult problem will
be considered when external boundaries of the structure or interfaces are aUowed to vary.
The respective variations of the considered functionals will be expressed in terms of the
variation of a transformation field specifying the shape modification. In particular, the
variation of the potential and complementary energies will be considered. When the
transformation field corresponds to translation or rotation of th~ boundary, the potential
energy variation is identical to that derived previously by Eshelby[8], Knowles and
Sternberg[9), Budiansky and Rice[lO] and Bui[II]. The application of the derived
expressions to optimal design problems will next be considered. In Section 2, the virtual
displacement and stress equations will be derived, whereas in Section 3 the variation of
the potential and complementary energies will be considered. In Section 4, the variation
of an arbitrary stress, strain and displacement functionals will be discussed and in Section
5 the stationarity conditions for some optimal shape design problems will be derived.
However, the significance of the obtained results is much broader as they can be applied
in fracture mechanics or in studying growth of biological structures or metallurgical
transformations. Some simple illustrative examples are presented in Section 6. The results
previously obtained in [2-5) for optimal shape design are incorporated in a much broader
context. A variational approach to optimal shape design was also discussed in [6,7] and
in books [13, 14).

2. VIRTUAL DISPLACEMENT AND STRESS EQUATIONS FOR STRUCTURES WITH
VARYING LOADED. FREE. SUPPORTED AND INTERNAL BOUNDARIES

Consider now an elastic body B occupying the domain V with the boundary S. The
surface tractions yo = t1 • D are specified on Sn displacements g = gO on S.. Under applied
loads, the body passes from its initial configuration C to a deformed configuration C"
specified by the displacement field u, x" = x + u. Besides a deformation process C....Cd
consider a transformation process C-C" x' =x +" with the imposed transformation field
,,(x) specified within V, Fig. I. Obviously, this transformation field modifies shape of
external boundaries or internal interfaces between different materials. The major question
ss Vol. 20. No. 6-" 527
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Fig. I. (a) Transformation and deformation process of the body, (b) Primary structure ofvarying

shape, (c) Adjoint structure for stress functional.

can now be posed as how stress, strain, displacement or some global functionals are
modified due to transformation of a structure. In analysing this problem, an important
constraint is imposed on the transformation field namely, the variation of a particular
boundary portion, say Sr or SIl' is assumed as not affecting the remaining boundary
portions. Thus, the variation of each boundary part or interface can be treated separately.
This restriction limits the class ofshape variations since in actuality the shape modification
may occur with simultaneous variation of all portions of the boundary with interaction
effects occuring on the lines separating these portions. Such coupledboundary variation will
be treated in a subsequent paper and here only non-coupled variations of particular
portions will be considered. It is further assumed that fP(x) is a continuous and
differentiable field.

The analysis will be confined to small displacement and strain theory. Assume stress
O'(x), strain €(x) and displacement o(x) within the body (referred to a Cartesian reference
frame) to satisfy equilibrium, compatibility and boundary conditions. Let the reference
configuration correspond to a given transformation field fP(x). Consider next the
infinitesimal transformation OfP(x) of the structure and the associated variations cSG'(x),
Ol(X) and ou(x). In this Section the modified forms of virtual displacement and stress
equations will be derived and next applied in derivation of the functional variation.

2.1 Virtual displacement equation
Consider a simultaneous variation of the displacement and transformation fields. Ifx·

denotes the position of a point P, initially placed at x, after infinitesimal variation of fP,
we can write, Fig. 2(a),

u1(x*) =u,{x) +ou,{x),

where {}fP is a differentiable field. From (1) and (2), it follows that

(1)

(2)

(3)

where comma preceding an index denotes partial differentiation. Here lJuj = u1(x) - u,{x)
denotes the displacement variation for a fixed configuration of the body. Assume first that
the boundary portion SII is not altered and then we have {)uj = lJiij = 0 on Suo
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Fig. 2. Variation of displacement <a) and stress (b) fields due to boundary shape variation.

The variation of strain is expressed similarly as follows

(4)

Consider now the static continuation of the stress and body force fields beyond the domain
V, Fig. 2(b), namely

(S)

Such stress field satisfies the equilibrium conditions beyond the boundary S. thus

The loaded boundary Sr is transformed into S~ and

Tf(x*) =CTt(x*)nt.

(6)

(7)

where n* is the unit normal vector to S~. For the transformed configuration V*, there is

(8)

Let us now transform the integration within V· and over S1 to integration within V and
over Sr. Since the following transformation rules occur, see Appendix A,

(9)

(9)

where n denotes the unit normal vector to Sn eqn (8) can be presented in the form

f(Uq+ CTiJ'k~lpk)(£iI+ ~i'q+ £iJ'k~lp.)(1 + ~lpbl)dV =

= fT,u/o dS.. +f(CTq + Uq,lcSlpl)(U/ + cSu/ + U/'lcSlp.) (10)

x (nj + n!>lpk.k - n.cSlpbJ) dSr +fu;+fit.~lp.)(ui + cSu/ + u/,.cSlp.) (I + cSlpbk) d V.
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Since for the untransfonned configuration, there is

I(1;!-ij d V =ITjujOdSu +IT;°Uj dST+ I/,ujd v,

after subtracting (11) from (10), one obtains the virtual displacement equation

(11)

f (1iJ~lij d V = f T;°IJiljdST + f/,~Uj dV + f(qjklSfPj - (1ybfPs,)U/],!'k dST• (12)

Applying the Stoke's theorem to the last integral of (12), it can be reduced to the
curvilinear integral along the curve bounding the surface.portion ST on S, thus

where t/ is the unit vector tangential to r, lJqJr is the transformation variation on rand
ejk/ is the permutation symbol. However, when ISfPr = 0 on r, the last term of (13) vanishes
and there is

fO'·lSldV= IYO'lSiidST+ If'lJUdV, (14)

where the dot between two tensors or vectors denotes summation with respect to their
indices.

This fonn of the virtual displacement equation will be used in subsequent analysis.

2.2 Virtual stress equation
Consider now the simultaneous variation of the stress, body force and transformation

fields. Simultaneously as previously, we can write

q;(x*) = (1;f..x) + lJ(1lj(x) =(1;f..x) + lJiJ;f..x) + (1ijJk(X)lJfPb

!r(x*) =fl..x) + lJfl..x) =fl..x) + lJ!l..x) +/;,.(X)lJfP., (15)

where c5iJij =q t(x) - (1;f..x) and lJ}; =!rex) - fl..x) are the stress and body force variations
for the fixed configuration of the body. Since the stress 0'; is statically admissible, thus

and

c5iJijJ + IS}; = 0 within V.

(16)

(17)

Continuing analytically the displacement and strain fields from V to V*, we can write

u~(x*) = ul..x) + u,..(X)lJq>.b
(18)

£;(x*) =£;f..x) + £q,lt(x)lJq>•.

Substituting (15}-(18) into (8), retransforming to the initial domain Vand subtracting (11),
the virtual stress equation takes the form

Ic5iJij£ij dV =IlJ!;Uj dV +IlJT;u/O dSu +IlJiJqU,nJdST - tJtPqU,tllJq>l dr. (19)

Let us note that for lJfP/ =0 on r, the last term of (19) vanishes.
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Consider now the variation of surface tractions on the boundary portion S1" Denoting
the total variation of these tractions by 6TO, we can write

6~O=Tn,,·) - TjO(x) ={)u;pnj + u;pnj>

and in view of (15) and the third equality of (9), we obtain from (20)

Using now (21) in (19), the virtual stress equations can be presented as follows

(20)

(21)

(22)

f6a~ildV = f{)!tU1dV +f{)TtU~dS" + f[U;UAOjl

- nllj)n"oqJ",/- U/l>"UIIPqJ"J dSr +f°Tt°uj dSTJ

where 6jl denotes the Kronecker's symbol.
Let now the surface Sr be parametrized by an orthogonal curvilinear system ex, fJ

coinciding with the principal curvature lines on Sr and let a", b" denote the unit vectors
tangential to ex and fJ. The transformation components in the coordinate system ex, fJ, n
are now expressed as follows

(23)

and since for any continuous and differentiable function !(x) on Sr there is

(24)

where A 2 and B2 are the coefficients of the first quadratic form on STJ eqn (22) can be
presented in the form

(25)

where H denotes the mean surface curvature on STJ satisfying the equality

(26)

Since the variations 6q>" vanish on the curve r bounding the surface portion Sr undergoing
transformation, then the last integral of (25) vanishes and the virtual stress equation is
alternatively expressed as follows

f oa .( dV= f 6 T . UO dS" + f 6TO . a dSr + f61. U dV+ f H(T' .a),11 + r· u

- 2'fO. uH - (J • (]n" - ~", u}6qJ" dSr . (27)
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Let us note that the eqns (22) and (27) are valid for both conservative and non-conservative
loading.

In particular, when ()({1k =0 on Sr and the boundary variation occurs only on the free
boundary portion So where or' =0, eqn (27) becomes

Introducing a local Cartesian system Yk on So- with the axis Y3 normal to So and the axes
Yl> Y2 lying in the plane tangential to So, eqn (28) can be presented in an alternative form

where aM and £k/ (k, I := 1,2) are "internal" stress and strain components referred to the
axes lying within the tangent plane to So'

2.3 Transformation of the supported boundary Su
Consider now the case when the transformation field modifies the boundary S/I on

which the displacement vector u:= UO is specified. Since now, see eqn (3),
bU =bu +U'kb({1k =0 on S/I' the virtual displacement equation takes the form

(30)

provided the boundary variation vanishes on the curve r separating S/I from other
boundary portions. On the other hand, the virtual stress equation is identical to (22) or
(27), that is

fbc1 . £ dV =f()J . UdV +fcST· Uo dS/I +fn(T . u),,, - 2T . U
OH

+f· u - a 'l]nk - T,,\: . UO}b({1,\: dS/I' (31)

For the case of rigidly supported boundary, that is u°:= 0 on S/I, eqn (30) is reduced to
the form

ftJ • cSf dV = f ( . bU dV +fTO 'cSiidST - fT' u,,,e5({1,, dS/I,

whereas the virtual stress equation (31) takes the form

(32)

(33)

We have thus discussed consecutively the variation of each external boundary portion,
assuming that there is no interaction between variations of these portions. As mentioned
previously, the case of coupled shape variations will be treated separately.

2.4 Transformations of the interface Sc
Consider now a two-phase body composed of two materials occupying subdomains VI

and V2 and separated by the interface Sc, that is V:= VI UV2, Fig. 1(b). Assume the
transformation field to modify only Sc' whereas the external boundary remains unchanged,
thus ()fP = 0 on S.

Since the stiffness moduli vary discontinuously on Sc, the displacements u =ut and the
surface tractions T< = at . Dt are continuous, but their gradients and stress components
exhibit discontinuities. Denoting by [ ] the discontinuity of the enclosed quantity on St
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calculated as a difference of respective values in the domains VI and V2, we have

[Ue] =0, [Tel =[0"] .ne,
[U~A] = [u~lI]n{, [T~k] = [T~JI]n{.

533

(34)

Let f l , 0"" (" u, and f2•0"2. (2' U2 be body forces. stress, strain and displacement fields within
V, and V2• The virtual displacement equation for the field cSu now takes the form

f0"1' (Sil dVI+ f0"2· (Si2dV2=frl ·6ul dVI+fr2· cSU2 dV2

Since [6ue
] is continuous on Se, we have

[cSur] =[our] + [u~JI)6q>JI =O.

Substituting (36) into (35). we obtain

fO"l.6l'ldVI+ f0"2· 6l2dV2= ffl·6iildVI+ ff2 '6ii2dV2

+ fT'" 6iidSr - f~. [u~"]6q>,,dSe,

(35)

(36)

(37)

provided 6tpr = 0 on the curve r lying on the boundary surface S. The derivation ofvirtual
stress equation follows similar lines. In fact, we may write

fbil'E,dVI+ fcSi2'E2dV2= fal,.UldVI+ fa12'U2dV2

+ fcST· UO dSII + fur. [ail 'ne dSc>

and since cST is continuous on Se. thus

(38)

and in view of (9), there is

[cSaq]nI = [uq]n{cSq>.bj - [Uq,k]n/oq>k' (40)

Substituting (40) into (38), it follows that virtual stress equation takes the form

fbil • £, dVI+ fbi2 • E2 dV2 =fcSl, 'u, dVI+ f612, U2 dV2

+fcST· If dSII +f([Uq]U{nkecSq>j:,j - [u!J'k]u{n/oq>k) dSe, (41)

or alternatively by applying the Stoke's theorem. it is obtained for cS. r = 0 on r

fcSi, . E, d V, +fcSi2. (2 d V2 =fcST•. UI d VI + f6f2. U2 d V2

+fcST· UO dSII + f([r]. u - [Ukl]£~/)cSq>JI dSe, (42)
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where (1kl and (k/ denote the 'internal' stress and strain components referred to the
coordinate axes lying in the plane tangential to St' A more detailed discussion of the
interface variation is presented in [4J.

We have thus discussed consecutively the virtual equations for the variation of each
boundary portion. These equations will be now used in the subsequent analysis.

3. VARIATION OF POTENTIAL AND COMPLEMENTARY ENERGIES ASSOCIATED
WITH BOUNDARY VARIATION

3.1 General case
In this Section, we shall apply the virtual displacement and stress equations in order

to derive the first variations of the potential and complementary energies corresponding
to transformation of the external boundary or the interface ofa structure. Such variations
can next be used in deriving the optimality conditions for an optimal design with specified
global elastic compliance.

Consider the potential energy

n,,(U, f, 'rI, tp) = fU(£)dV - fr· udV - f'rl' iJdSr. (43)

where U(l) denotes the specific strain energy per unit volume. Our analysis in this Section
will be referred to both linear and non-linear elastic materials. The first variation of nIl
equals

and since

in view of (9) and using the virtual displacement equation (14), we obtain

or in an alternative form

where it was assumed that cStpr = 0 on the curve r bounding the varying portion of the
boundary Sr.

Assume first that the surface loading is conservative and does not depend on the surface
configuration, but may vary with a position. Then cS'rI =~kcSq>k and (47) becomes

cSn" = f[U - f· u - ('rI' u),,, + 2'r1· uH]cSq>" dSr·

As an example of a non-conservative loading, consider the pressure loading

'rI=p(x)n

directed along the normal to the surface. In view of (9), there is

(48)

(49)

(50)
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and the variation bnu is expressed in the fonn

Consider now the complementary energy

535

(51)

(52)

where W(O') denotes the specific stress energy per unit material volume. The first variation
of ntl equals

(53)

and in view of the virtual stress equation (22), in which it is now assumed that there is
no local variation of body forces, it follows that

or alternatively

bn" = f{[W + (T" u)'/I - 2T'· uH +r· u - 0' . £]nk - 'r.'k· U}blpk dST +fbT'· U dST• (55)

In particular, for a loading independent of surface configuration, (55) provides

bn" = f[W + (T'. u)'/I - 2T'· uH +r· U - 0' . £]blp/ldSn

whereas in the case of pressure loading (49), there is

(56)

(57)

(59)

When only free boundary So is subject to variation, and there are no body forces, the
derived expressions for first variations are considerably simplified. In fact from (47) and
(55) it follows that after setting T' =0, r=0 one obtains

Thus, the potential energy of a structure increases and the complementary energy decreases
by moving the free boundary in the exterior, that is by adding the material to a structure.

When, on the other hand, only supported boundary Su is modified, the first variations
of (43) and (52), in view of (30) and (31), take the fonn

bnu = f[(u - r· u)nk - T· u,Jblpk dSu,

and

(60)
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For the variation of the interface Sr' in view of (37) and (42), we obtain

(61)

and

(62)

where (f"f and ("I denote the 'internal' stress and strain components within the plane
tangential to Sf' The relation (61) was earlier derived in a different way by Eshelby[8] for
the case of translation of the interface.

3.2 Translation and rotation of the boundary
Consider now the body bounded by a surface Sr on which the fixed surface tractions

yo are prescribed. Assume, for simplicity, that the body forces are neglected and consider
two particular cases of shape transformation, namely (i) translation and (ii) rotation of
the body with external forces yo being respectively translated and rotated.

In the case of translation of the boundary by a vector {) a, it can be written

15qJ,,(X) =oa" =const.
bYO(X) = 0

for xeSn (63)

and from (46) and (54) we obtain the variation of nil and nil, expressed as follows

on" =f(Un" - yo. u,,,) dSrba" =f(Ubjlc - (fv'"i>")njdSroa,,, (64)

and

bnll = f(Wn" - (f!i,,,U;l'fj) dSr{)a" =f(Wbjlc - (fii,,,ujnjdSroa,,. (65)

On the other hand, when the body is rotated around a point R by the infinitesimal rotation
vector oro, the variations of point positions on Sr and their spatial derivatives are

(66)

Similarly, the variation of surface traction due to rotation of the traction vector takes the
form

(67)

Substituting (66) and (67) into (46) and (54), we obtain

bnll =fejlc,[(Unj - yo. U'j)x'- yo. U(bjl-1lJ'JJ dSrcSaJ"
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(69)

bUe = fejk/[(Wnj - (f;p.ji/lp)X/ + (fy.U,{bpt- n,n/)nJ dSTbw. +fejA;/T/ouj dSTbw.

= fejkJWXllj - «(fjpu/+ (f/p,jitX/)np+ buUllj] dSTbW•.

Let us note that the conservation laws formulated by Eshelby[8], Knowles and
Sternberg[9] and Bui[ll] can be derived from these expressions. Namely, considering the
invariance of n.. under translation and rotation of the domain of a homogeneous and
isotropic body, we can write

bU.. =O. (70)

In view of (64), the Eshelby conservation law for a homogeneous body takes the form

(71)

(72)

(73)

In the case of rotation (66), from (68) we obtain for an isotropic body

L. == f ejk/(Uxllj + T/u/- Tt°uj,rl) dS = 0,

which is equivalent with that derived by Knowles and Sternberg[9]. Similarly, considering
the stress energy, we arrive at the conservation law for a homogeneous body considered
by Bui[ll]

B. = f(Wb)t - (fq,.u/)njdS =0.

Let us note that S can now be identified with any closed surface within the body, in
particular with the boundary surface Sr.

4. VARIATION OF ARBITRARY STRESS, STRAIN OR DISPLACEMENT AND
TRACTION FUNCTIONALS ASSOCIATED WITH BOUNDARY VARIATION

In this Section, we shall derive the expressions for first variations of the functionals
Gt and G2 defined in Part 1[1], corresponding to variations of the boundaries Sr, So, S..
and Sc' Similarly as in Section 2, let us denote the total variations of stress, strain and
displacement by &1, bf and bU, whereas the variations for fixed configuration are
respectively lJii, bi and bU.

4.1 General case
Similarly as in[l], consider the functional

(74)

and its first variation associated with the variation of the loaded boundary Sr

(75)
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Following[1], consider now the adjoint structure of the same shape but satisfying the
boundary conditions

Ti og 5 of 5 f ah . h'
• 41 =au on T> u"o = - aT on u' "= au Wit In V

and with the imposed initial strain field {i specified by

. alp . h'
f.' = afl Wit In V.

(76)

(77)

Denoting the stress within the adjoint structure by fI', its total strain field {tl can be
presented as a sum

(78)

and it is compatible with the displacement field utl. The stress field fI' is related to {' by
Hooke's law, fI' = D 'E f

, and satisfies both equilibrium and boundary conditions

div fI' + ftl == 0 within V, (I' . n == 'ftlo on 51"

We therefore can write

and since

(79)

(80)

in view of the virtual .stressequation (22), in which it is assumed that there is no local
variation of body forces, we obtain

f~~ . M dV = fcST· tf'OdS,,+ f cST'· u"dSr + fC(I;pt -n!lj)ncO/PkJl

- uij'kutnpcpJd5r - fTag· biidSr - f(tl. biidV, (82)

and the first variation of GI is expressed as follows

hGI == IcST' . utl d5r + IU(lp + h>nk + «(I~i'k - (lU'kut>njJcS/Pk

+ [u;pt(bjl- n!lj)nk +g(cSk[- n~/)]cS/Pk'l} dSr · (83)

The alternative form of the first variation of Gh in view of stress equation (27), can be
expressed as follows

c5G1 =IcST'· u" dSr + Inlp + h + g," + cr· 0"),/1- 2(g + T'. o")H

- (I , {tl + f· u")nk - 'r.lk .u"}cS/Pk dSr. (84)

When only free boundary So is subject to variation and there are no body forces, assuming
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K(U) = 0 and II(u) =0, the expression (R4) becomes

539

(85)

where qkl and £:1 denote the 'internal' stress and strain components of primary and adjoint
structures within the plane tangential to So.

For the case of supported boundary variation, with Sr fixed, the first variation of G..
in view of (30) and (31), takes the form

c5G) = I{[lJI + h +f," + (T . u"O)," - 2if+ T . u"O)H - (J . £a

+ f· u"O)nk + T" . U'k}c5fPk dSII,
(86)

where static and kinematic fields accompanied with the adjoint structure satisfy once again
the conditions (76)-(79). Consider now the functional

(87)

and its first variation, expressed as follows

(88)

Following[l], let us introduce the adjoint structure satisfying the boundary conditions (76)
and with the imposed initial stress field

Thus, we obtain

. a4J
(J' =- within V.a£ (89)

(90)

and in view of stress equation (22), in which it is again assumed that there is no local
variation of body forces, there is

I (Ja. c5i dV = I(Ja. E· c5i dV = I£a. c5i dV = I c5T· IfOdSII

+ I c5YO . ua dSr + I [qqU;"(c5j/ - n"j)nk~fPb/- qij,kUjanpfPk] dSr, (91)

where (J and yo are the stress and traction fields of the primary structure whereas II" and
£a denote the displacement and strain fields of the adjoint structure. The variation c5G2 is
now expressed in the form

c5G2 = I e5'fO. II" dSr+f{[(4J + h)n" + (qUui'k - (J1j'kul)njJc5 fPk

(92)
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or in an alternative form
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(93)

In particular, when g(u) = 0, h(u) = 0, there are no body forces and only free boundary
So is subject to variation, the expression (93) becomes

(94)

For the case of supported boundary variation, with ST fixed, the first variation of G2, in
view of (30) and (31), equals

6G2 = f{[</J +" +f,n +(T' g"O),n - 2if+T' u"o)H - (J .£11 +('ufIo)nk

(95)

Consider finally the case when only the interface S~ undergoes the variation. Consider the
functional

(96)

where 'PI and 'P2, hI and h2 are continuous and differentiable functions of stress and
displacement within the domains VJ and V2 separated by the interface St. The variation
of GJ equals

Introducing the adjoint structure, satisfying the boundary conditions

'f"o =:: on Sr, g"O = - :; on S'"

and

(97)

(98)

f. II - iJh2 • h' V2 -- Wit In 2.
iJu

(99)

and with the initial strain fields

(100)
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the displacement field ua and the stress field tI' of this structure satisfy the conditions

[ua] =0, [T'] = [tI'] .n=0 on Sc'

Following similarly as previously, we can write

f~:: .c5i, dV, + f~::' c5i2 dV2 =f(Ii. c5i l dV. +f(2;' e5i2 dV2

=f (I
a

• c5i, dVI + f (2
a

• c5il dV2 - f tit'· 612 dVI - f tI{· b£2 dV2 •

= fc5T· IfOdS,,- f'f"o ·c5idSr +f(T" [u,,,] - [I1M]l:,

+ [f] . u")c5cp" dSc - fflo. c5ii dVI - ffl' 6i dV2,

(101)

(102)

where the virtual strain equation (37) and stress equation (42) were used. The variation
of GI can now be expressed as follows

provided 6'1'11 =0 on the curve r of intersection of the interface Sc with the exterior
boundary.

Considering alternatively the functional

G2 ==ftP.«(I) d VI +ftP2«(2) d V2 +fhl(u) d VI

+fh2(u)dV2 + fg(U)dSr+ f/(T)dSIl,

its variation is expressed similarly to (103), that is

(104)

Here T' is the continuous contact traction at the interface Sc of the adjoint structure
whereas £:, are the "internal" components of the strain field £0 of this structure. The
associated quantities of the primary structure are the discontinuities in displacement
gradient U,,, and in "internal" stress components tlk"

It can easily be shown that when GI and G2 coincide with the complementary and
potential energies, the derived expressions for variations of G1 and G2 coincide with those
derived in the previous section for variations of n~ and nil'

4.2 Translation and rotation of the boundary
The general expressions for variations of G1 and G2 can now be particularized to the

case of translation and rotation of the boundary.
When c5'Pk == c5ak =const. that is when the translation occurs, the general expression (83)

takes the form
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(108)

and similar expression for the variation of G2, namely

When the variation c5Tl associated with boundary translation vanishes, and GI coincides
with the complementary energy, then 'I' =W, Too =(I" n =0, u" =u. Moreover, setting
h == g == 0, from (106), we obtain

c5G) == on" == f(wnk- O'q.kU"j) dSroQk'

that is the relation (65). When on the other hand G2 coincides with the potential energy,
then ~ == U, TOO == (I" D = - Tl, u" == 0, and setting h ==f == O. from (107), we obtain

(109)

that is the relation (64).
Similarly in the case of rotation of a closed boundary Sr. 0CPk == etpXtOwj. the respective

expressions for c5GI and c5G2 are

and

(111)

(112)

When the variation bTl associated with boundary rotation is defined by eqn (67). again
the formula (69) is obtained when 'I' = W, TOO == 0, u" == u and h == g == O.

However, considering the expressions (106). (107) or (110). (Ill). a new class of
conservation laws is generated. Consider. for example. the case of translation. Setting
c5Tl == 0, h ==f == O. and considering integral on any closed surface S within the body, from
(106), we obtain for a homogeneous body (cf. Appendix B)

Zr== f('I'c5kj +O'IJuI.k - O'ijtkut)njdSr == O.

The similar expression can be obtained from (107). These new conservation laws obviously
generalize those derived in[8. 9. 11]. Their proof and application will be discussed in a
separate paper.

5. STATIONARITY CONDITIONS IN OPTIMAL SHAPE DESIGN

In order to illustrate the applicability of derived expressions for first variations of
functionals G) and G2• let us discuss the optimal shape design. Assume the cost of the
structure proportional to the material volume, thus

C == cfdV. c5C == cfn"c5q>" dS. (113)

where c is a constant parameter. The problem is then reduced to minimizing or maximizing
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the objective functional G With a specified upper bound on the structure cost, thus

min. or max. of G subject to C ~ Co.

Introducing the functional

G' = G + A(C - Co),

(114)

(115)

where Ais the Langrange multiplier, the condition of stationarity of G' is expressed as
follows

and

{)G' = {)G + A{)C + ()l(C - Co) =0,

{)G = -l{)C, ()l(C - Co) =o.

(116)

(117)

The second equality requires either C = Co or {)l =O. The first condition can be expressed
explicitly by using the respective expression for variation of G and (113).

In particular, when G = G. and G. is defined by (74), the optimality condition (116)
is expressed as follows

f{)'fO. u" dSr+f{PI' + h +g,,, + (TO. 11"),,, - 2(g + 'fO. II")H - tI •E"

+f· u"]n. - T!•. u"}{)(,O. dSr = - A.cfn.{)(,O. dSro (118)

(119)

where the expression (84) for ()G. was used. When, in particular, G. coincides with the
complementary energy n., then 'l'(tI) = W(tI) and in view of (55), we have

f{[W + ('fO. u),,, - 2'fO· uH - tI . E + f· u]n. - T!.' u}{)(,O. dSr

+f{)'fO. udSr = -ACfn.{)(,O.dSr·

In the case of free boundary variation (TO =0) in the absence of body forces and with
h(u) =0 within V, g(u) =0 on So, from (85) it follows that

f ('l' - tI . E"){)(,O" dSo= - AC f {)(,O" dSo,

and the local optimality condition is

tI . E" - 'l' = A.c =const. on So.

(120)

(121)

Finally, when only supported boundary S" is subject to variation, the optimality conditions
for the objective functional (74), in view of (86), are expressed as follows

f{['l' + h +f,,, +(T . 11"),,, - 2if+T . tJ"O)H - II • E" +f· tJ"O)n.

+T" . u,.}{)(,O. dS,,'" - lcfnk{)(,Ok dS".
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(122)
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Similarly, the optimality conditions can easily be stated for the objective functional G2

expressed by (87). In fact, using (93) and (113), the optimality conditions for the loaded
boundary variation are

f{[II> + h + gon + (TO· ua),n - 2(g + TO . ua)H - tI . (a + f· u"]n. -~•. ua}15q>. dSr

+f15 TO . gO dSr = - J..cfn.15q>. dSn

and for the variation of free boundary, in the absence of body forces and with h(u) =0
within V, g(u) =0 on So, the local optimality condition is

tI . (a - II> = J..c = const. on So' (124)

In particular, for the global compliance design, when G2 coincides with the global potential
energy llu and thus «P(£) = U«(), the condition (124) becomes

U = - J..c = const. on So. (125)

The sufficient optimality conditions for that case of design were derived in[2, 3]. They
require the specific strain energy to be constant on So and a decreasing function along the
exterior normal to the boundary.

When only variation of supported boundary is considered, the optimality conditions
for the objective functional G2 (87), in view of (95), become

f{[«P + h +f,n + (T . gO)on - 2U'+ T . Ji'O)H - tI • (a + f· Ji'O]n.

+ TO . u,.}15q>. dSu = - J..c f n.15q>. dSu' (126)

For the case of mean compliance design, when G2 coincides with the global potential
energy nu, the local optimality condition for rigid support on Su follows directly from
(126), namely

U - T· u,. = -J..c =const. on Suo (127)

For the variation of the interface Se' in view of (103) and (lOS), the optimality conditions
are

[1[1] + [h] + T'· [u,.] - [tlkJ]£:1 + [f] .If = -J..(c) - cJ =const. on Se,

15J..(C - Co) =0,

and

[cP] + [h] + T" [u,.] - [tlkJ]£:I+ [f]· If = -J..(CI - cJ = const. on Se,

15J..(C - Co) =0,

where c. and C2 denote specific costs of the portions VI and V2, so that

(128)

(129)

(130)
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For the case ofmean compliance design, when GJ coincides with the complementary energy
JIrt and G2-with potential energy [Ju, the conditions (128) and (129) become

(131)

and

(132)

The equivalence of (131) and (132) follows from the equality

(133)

valid for k, I = I, 2, i = I, 2, 3 and n =3, where k, I, n is the local coordinate system with
k, I-axes lying in the plane tangential to Sc'

The application of the optimality condition (131) in optimal design of stepped pla.tes
was presented in[4].

S. EXAMPLES

In this Section, two simple examples ofapplication of the derived optimality conditions
are presented. Further examples can be found in previous works[3-5].

Example ·1. Prismatic bar under torsion and bending
Consider a prismatic bar of elliptic cross-section, subjected to combined torsion and

bending by the moments M, and Mb, Fig. 3(a). We shall look for an optimal cross sectional
shape within the class of elliptic shapes of specified cross-section area Ao and for the stress
constraint

(134)

where o"u, 0"23 and 0"33 are the non-vanishing shear and normal stress components within
the bar, refered to the coordinate system (XI> X2, x). These components are expressed as
follows in terms of the bending and torsional moments

(135)

Instead of the condition (134), we shall minimize the functional

G
J
= f(O",)m dA = [O"i) + 3(O"i~+ 0"~)rI2 dA ....min.,

0"0 0"0
(136)

_..,

oj b)

Fig. 3. Prismatic bar under torsion and bending; <.) Bar subjected to combined torsion and bending
by the moments M, and M., (b) Distribution of the effective stress tI, along the cross-sectional

perimeter <M,/M. = I, 11 =0.3).
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subject to the constraint
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(137)

Let us note that for m-+00 the functional G1 represents the local effective stress defined
by (134). The shape variation now depends on two parameters al and ~. and the
stationarity condition (120) now takes the form

(138)

where

(139)

and the initial strains within the adjoint system are

i 0'1' 3m ... -2
£Il =;;-- = -;;; C1, C1ll,

vC1n ao

I 0'1' 3m ... -2
€2l = -;-- = --;;; a, a2l.

(la23 ao
(140)

The variation of the cross-sectional shape occurs due to variation of its semiaxes a, and
a2• thus

(141)

In view of (140) and (141), the stationarity condition (138) takes the form

(142)

The optimal values of a, and a2 are calculated from (142)

(143)

Figure 3(b) presents the distribution of the effective stress along the cross-section perimeter
(curve I). It is seen that a, is constant for the shape specified by (143).

Consider now the mean stiffness design for which the complementary energy is
minimized

U.(a,er)=fW(er)dA-+min•. (144)
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The optimal values of a. and a2 now are

547

Mb)2
M, + I, (145)

Curve 3 in Fig. 3(b) represents the distribution of (1, along the boundary for the design
specified by (145). It is seen that (1, does vary significantly. On the other, for a circular
cross section of the same area the variation of (1, is quite considerable, (curve 2 in Fig.
3b).

Example 2. Design of annular disk
Consider a circular disk of radius r, with a central of radius rl , loaded uniformly by

pressures P, and PI' Fig. 4(a). Consider the mean compliance design for which both radii
r, and r, are to be determined such that the complementary energy

1 f"nil =2E «(1,2 - 2"1(1,(1, + (1,2)r dr
'1

attains a minimum subject to the condition of constant material cost

C =rn(r/ - rl) = Co,

(146)

(147)

where (1, and (1, are radial and circumferential stresses, and E, vdenote the elastic constants.
The optimality conditions in the case of pressure loaded boundary follows from (57) and
have the form[S]

(1 • E - W - div (pu) =Ae, C =Co,

which in our case become

«(1, +PI)2 - 2(1 - v)pl == 2AcE for r =r
"

«(1, +p,)2 - 2(1 - v)p/ =2AcE for r =r,.

The stress state within the disk is expressed as follows

(148)

(149)

A
(1'=""1+ B,

r

A
(1,= -""1+B,

r

tlfe]
'i-'"

0'I. I

4;: t •

r,-o

1. •I
I
I
I
I
I
I
I
I
I

O.
l:!.

l~J,..

(ISO)

~ ~

Fig. 4. Design of annular disk; (a) Disk loaded uniformly by pressures p, and P" (b) Variation of
rJr. in function of pJp,.
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where
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2 2B _ Pli - p,r,
- r 2 _r 2 •

, I

(lSI)

Substituting (ISO) into (149), and solving for r;, r" we obtain

valid for

I,.=
I 2

Co (3 - v)p, - (l + v)p; I
- , ~=-
1tC Pi- P. 2

P· 3-v
I <....!<--.

p. I +v

Co (3 - v)p,- (I + v)p,
1tC p,- p,

(152)

(153)

Figure 4(b) presents the variation of r;lr. in function of pJp•. It is seen that for ptlp, < 1
the optimal solution corresponds to the vanishing hole, whereas for p;/p, varying within
the range corresponding to tbe inequality (153) the disk is gradually transformed from a
thin ring into a circular disk without the hole.

6. CONCLUDING REMARKS

The present work is supplementary to Ref. [I] and provides a systematic variational
approach to sensitivity analysis and optimal design of a structure with shape variations
of its boundaries. It summarizes and extends previous results obtained in[I-S). The
analysis is limited to linearly elastic structures for which the concept ofan adjoint structure
can easily be applied in order to derive the expression for first variation of any volume
or surface integral.

Besides optimal design or identification problems the present approach can also be
applied in study of fracture problems, metallurgical transformations, grain boundary
movements or growth process of biological materials. In these cases the transformation
field fP(x) is specified by a growth or transformation rule, relating the rate of growth to
mechanical or chemical state parameters. This new and unexplored areas of structure
transformation will be discussed in more detail in future papers from the point of view
of sensitivity analysis and optimality conditions.
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APPENDIX A
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Material deri,.tiles on • surfaee element

In order to make our paper sensibly self-contained, we present briefly the derivation of material rates of
normal and tangential tractions and forces acting on the surface element undergoing transformation. The
variations used in the paper can thus be identified with material rates. A systematic discussion of material rates
of surface data was recently presented by HiI1[12].

(I) Material rate of a normal unit vector to the surface. Consider a material surface element in motion
associated with transformation

Then, the material derivative of (AI) is

or
f'=-+f"=Oat

(AI)

(Al)

where ,; = , denotes the transformation velocity vector on the surface, and f ... O/o/iJx is the gradient of surface
(AI). The material derivative of r is expressed similarly

(
of') o'fO a'fOIt. - =--+--vox; axpt oxpx.··

However, from (A2) it follows that

In view of (A3) and (A4), we have

or

where L,'" V;.j ... fill'; and LJ... Lv is tnmspose velocity gradient matrix.
The unit normal vector to the surface (AI) is expressed as follows

f f
a=--=-

(f· f)IIZ f

and in view of (AS) its rate equals

and finally

where

are the associated strain and rotation rates.
Equation (AS) can be written in an alternative form

(A3)

(A4)

(AS)

(A6)

(A7)

(AS)

(A9)

(A10)

(2) Material rate of a tangential unit vector on the surface. Consider now any curve r lying on the surface
(AI), given in the form

X=X(t)

where t is a parameter specifying r. The vector tangential to this curve can be exp~ as follows

dx
X,,· dt

and its rate equals

(All)

(A 12)



SSO

or

K. DEMS and Z. MR6z

x"=L·x,, (AB)

where, as previously, Lv =Vi'j == rill'-'
The unit tangential vector to the curve (All) is now expressed as fonows

and in vicw of (A 13), its rate equals

. I X"
t == -i'f -2X,,'" L·t - (t·L·t)t.

X't X"

Thus, finany we can write

i == L·t-(t·L·t)t = D·t+w·t-t(t·D·t)

where D and w are defined byeqn (A9). The alternative form of (AI6) is

ii = (6/k - Ih)v•.h

(AI4)

(AIS)

(AI6)

(AI?)

Since eqn (All) describes any curve lying on the surface (AI), then relation (AI6) or (AI?) defines the material
rate of any unit vector t being tangential to the surface (AI).

(3) Malerial role o/Ihe SlIT/ace elemenl area. For any material line element dx on the surface S (AI) there
is

(AI8)

Consider two infinitesimal material elements dx l and dx2• The vector of surface element area is then, see
Fig. Al

(AI9)

(A20)

where Xdenotes the vector product and n is the unit normal vector to S; ciS is the area of surface element and
eljl; denotes the permutation symbol.

Equation (AI9) can be now expressed as fonows

dS, == ~ eljl;(dx/dx.2
- dx.' dx/)

and in view of (A 18) its material rate is

(A21)

Multiplying now eqn (AI3) be e.... it is obtained

(A22)

Using this relation in (A21), the material rate of surface element vector can be expressed as fonows

as•... LuciS. - LJlciSJ

or

.as =(divv)dS - V' lIS

that can be written alternatively as

ilsi ... (np.,. - nJlJ,J dS

Calculating now the material derivative of the first equality of (AI9), we can write

in view of (A8), (AI9) and (A23), we obtain

(divY)dSn = ciS n + (n'L'D) dS n.

Thus, the material rate of element area equals

ciS ... (din -D'L'n)dS

(A23)

(A24)

(A25)

(A26)

(A2?)
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(A28)

(4) Materilll rate ofmrface tractions. Consider the surface traction being pennanently normal to the loaded
surface. for which intensity factor equals p. The nonnal stress vector at any point P of boundary surface can
be expressed as follows

tI. = P D

and the nonnal force vector acting on surface element dS takes the fonn

R.=tI.dS =p DdS =pdS.

To calculate the material rate of stress vector tI.. in view of (A29). we can write

•• -' a+p 6.

(A29)

(A30)

(A31)

(A32)

Using now (A8) and (A29) in (A31), the material rate of nonnal stress vector tI. is expressed in the fonn

Ii = (n'L'n)tJ - U'tI +~tI
" ,. II p"

or, in view of (A9). as

Ii = (n'D'n'- +co·tI -D·tI +~tI
II /Un It " li-

P

Similarly, it follows from (A30)

and by using (A23), the material rate of nonnal force vector R. is expressed in the fonn

*. = (divv)R.- LT. R.+~ R•.
p

In a Cartesian reference system. the relations (A33) and (A3S) can be expressed in a matrix fonn

{a•.} = [a~vk'~ n,)J{a.J + «{a.. }

and

(A33)

(A34)

(A3S)

(A36)

(A37)

A quite different kind of loading ocx:urs in the case of tangential follower force. Here. the local traction is
tangential to an embedded fibre element of the surface. In this case, the tangential stress vector at any point P
of the loaded surface can be expressed in the fonn

tI, = q t (A38)

(A39)

where t denotes unit tangential vector on Sand q is intensity factor of tangential force. In view of (AI6), the
material rate of (A38) is expressed as follows

ti = L·tI - (t· L·t)tJ +!tI" , q'

or. in view of (A9), it takes the fonn

0', = D·tI,+ co ·tI, - (t· D·t)tJ, +!tI,.
q

The tangential force vector is defined by

R, = qt dS = tI,dS

and in view of (AI6) and (A27). its material rate equals

*, = L'R, -(t·L·t+n·L·n)R, +(div v)R,+! R,.
q

In the Cartesian system (XI' X2' x). these rates are expressed in the matrix fonn

(A40)

(A41)

(A42)

(A43)
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{R,,} =IBU<vk'/; I,; n,)] {R,J + P{R,,}. (A44)

(81)

Let us note, that for both of considered loadings their material rates are the sum of two parts-the first part
being the controllable part independent of material response and the second one being the transformation
sensitive part depending linearly on the velocity gradient.

APPENDIX 8
Proof of the con&enatioD rule (111) for an arbitrary stress fuacdoDal

Consider the integral (112). that is

Zk= f '1'(u_~kJ+U'pMPk-U~'klli')n;JS

specified on any closed surface S within the homogeneous body. Here '1'(0'_) is an arbitrary scalar stress function
possessing uniquely defined gradient 0 '1'/00'_. The adjoint body is specified by (76)-{79) with g =f =h =O.
The stress field within the adjoint body is u~ whereas ut is the displacement field. In view of (77) and (78) the
initial strain field within the adjoint body is

(82)

(83)

and u~ is the residual stress field induced by the initial strain field l~.

Transform the surface integral (81) into the volume integral

Zk = II'1'.k +(UyU"k)'j- (Uji.k";").)dV,

=f[:~ U9'k + U~.}lI'k + u'pMPk/ - (Uji.j)'k/j" - U9'kll f,j] dV,

=f[:~ U9'k + U~ji'k - U9'klZ}V,

where V, is the volume of the domain enclosed by the surface S. In (83) the second and the fourth terms vanish
by virtue ofequilibrium conditions for stress fields u~and 0'" that is U"j= U"j= O. in view of (82). the expression
(83) is further retransformed as follows

Zk= fIl~ji'k+U~~"-l~ji"-l~ji.JdV,=fIU~ji'k-l~4i.JdV,.

For a homogeneous body. there is

since the stiffness matrix does not vary with position D/;M'k =O. Thus U~ji'k - l PiN =O. and

for any closed surface S within the body considered.
Consider the stress functional

(84)

(85)

(86)

(87)G. = f '1'(u~) dV.

Since lJG1 = Z.lJak for the translation of any closed surface. the stress functional G1 preserves constant value
during translation of the body.


